From: Christoph Fuerst Date: Mon, 3 Apr 2017 19:01:40 +0000 (+0200) Subject: Divided sources into several files X-Git-Url: http://git.risc.jku.at/gitweb/?a=commitdiff_plain;h=d653147e5e1804577b0645f3c2a14d2e793ecd4b;p=cfuerst%2Fformal-numbers.git Divided sources into several files --- diff --git a/src/cryptoalgorithms.h b/src/cryptoalgorithms.h new file mode 100644 index 0000000..86c82cc --- /dev/null +++ b/src/cryptoalgorithms.h @@ -0,0 +1,27 @@ +/* + * cryptoalgorithms.h + * + * Created on: 03.04.2017 + * Author: christoph + */ + +#include +#include +#include + +#ifndef CRYPTOALGORITHMS_H_ +#define CRYPTOALGORITHMS_H_ + +void factor_int(mpz_class N, mpz_class* d, unsigned long& nooffactors, mpz_class *factors); + +void factor_int2(mpz_class N); + +int xGCD(long a, long b, long &x, long &y); + +void tonelli(long a, long g, long p); + +void discrete_log(long p, long g, long a); + + + +#endif /* CRYPTOALGORITHMS_H_ */ diff --git a/src/discrete_log.cpp b/src/discrete_log.cpp new file mode 100644 index 0000000..9421ba8 --- /dev/null +++ b/src/discrete_log.cpp @@ -0,0 +1,63 @@ +/* + * discrete_log.cpp + * + * Created on: 03.04.2017 + * Author: christoph + */ + +#include +#include +#include "cryptoalgorithms.h" + +using namespace std; + +void discrete_log(long p, long g, long a) +{ + long m = -floor(-sqrt(p-1)); + cout << "So far we got: m=" << m << endl; + long *A = new long[m]; + long *b = new long[m]; + + A[0] = 1; + b[0] = a; + + for(int i=1;i +#include +#include +#include "cryptoalgorithms.h" + +using namespace std; + +/* Algorithm A from Knuth's Art of Computer Programm 2: Seminumerical Algorithms */ +/* page 380 */ +void factor_int(mpz_class N, mpz_class* d, unsigned long& nooffactors, mpz_class *factors) +{ + /* Step A1: initialize t = 0, k = 0, n = N */ + unsigned long t=0; + unsigned long k=0; + mpz_class n = N; + + mpz_class* p = new mpz_class[n.get_ui()]; + + mpz_class q, r; + + /* Step A2: n=1? */ + while(n != 1) + { + /* Step A3: q = floor(n/dk), r = n mod dk */ + q = n/d[k]; + r = n%d[k]; + + /* Step A4: r != 0 */ + if(r != 0) + { + /* Step A6: Low quotient */ + if(q > d[k]) + { + k++; + } + else + { + p[t] = n; + n = 1; + } + } + else + { + /* Step A5: Factor found */ + p[t] = d[k]; + t++; + n = q; + } + } + + for(size_t i=0;i<=t;i++) + factors[i] = p[i]; + nooffactors = t; + +} + diff --git a/src/factor_int2.cpp b/src/factor_int2.cpp new file mode 100644 index 0000000..04ebef9 --- /dev/null +++ b/src/factor_int2.cpp @@ -0,0 +1,39 @@ +/* + * factor_int2.cpp + * + * Created on: 03.04.2017 + * Author: christoph + */ + +#include +#include +#include +#include "cryptoalgorithms.h" + +using namespace std; + +/* Algorithm C from Knuth's Art of Computer Programm 2: Seminumerical Algorithms */ +/* Fermat like factorization */ +/* page 387 */ +void factor_int2(mpz_class N) +{ + unsigned long a = (unsigned long)(2*sqrt(N.get_ui())+1); + unsigned long b = 1; + signed long r = (signed long)((unsigned long)(sqrt(N.get_ui()))*(unsigned long)(sqrt(N.get_ui()))-N.get_ui()); + + while(r!=0) + { + r = r+a; + a = a+2; + + while(r > 0) + { + r = r-b; + b = b+2; + } + + } + cout << "Found prime-factors: " << (a-b)/2 << " and " << ((a+b-2)/2) << endl; +} + + diff --git a/src/primefactors.cpp b/src/primefactors.cpp index b1a3306..d44616d 100644 --- a/src/primefactors.cpp +++ b/src/primefactors.cpp @@ -21,186 +21,12 @@ Finished building target: PrimeFactors */ #include -#include #include #include -using namespace std; - -/* Algorithm A from Knuth's Art of Computer Programm 2: Seminumerical Algorithms */ -/* page 380 */ -void factor_int(mpz_class N, mpz_class* d, unsigned long& nooffactors, mpz_class *factors) -{ - /* Step A1: initialize t = 0, k = 0, n = N */ - unsigned long t=0; - unsigned long k=0; - mpz_class n = N; - - mpz_class* p = new mpz_class[n.get_ui()]; - - mpz_class q, r; - - /* Step A2: n=1? */ - while(n != 1) - { - /* Step A3: q = floor(n/dk), r = n mod dk */ - q = n/d[k]; - r = n%d[k]; - - /* Step A4: r != 0 */ - if(r != 0) - { - /* Step A6: Low quotient */ - if(q > d[k]) - { - k++; - } - else - { - p[t] = n; - n = 1; - } - } - else - { - /* Step A5: Factor found */ - p[t] = d[k]; - t++; - n = q; - } - } - - for(size_t i=0;i<=t;i++) - factors[i] = p[i]; - nooffactors = t; - -} - -/* Algorithm C from Knuth's Art of Computer Programm 2: Seminumerical Algorithms */ -/* Fermat like factorization */ -/* page 387 */ -void factor_int2(mpz_class N) -{ - unsigned long a = (unsigned long)(2*sqrt(N.get_ui())+1); - unsigned long b = 1; - signed long r = (signed long)((unsigned long)(sqrt(N.get_ui()))*(unsigned long)(sqrt(N.get_ui()))-N.get_ui()); - - while(r!=0) - { - r = r+a; - a = a+2; - - while(r > 0) - { - r = r-b; - b = b+2; - } - - } - cout << "Found prime-factors: " << (a-b)/2 << " and " << ((a+b-2)/2) << endl; -} - -int xGCD(long a, long b, long &x, long &y) { - if(b == 0) { - x = 1; - y = 0; - return a; - } - - long x1, y1, gcd = xGCD(b, a % b, x1, y1); - x = y1; - y = x1 - (a / b) * y1; - return gcd; -} - -void tonelli(long a, long g, long p) -{ - long locpm1 = p-1; - long s=0, t=0; - long tmp, gi; - long u,v; - - while((locpm1 % 2) == 0) - { - s++; - locpm1 /= 2; - } - t = locpm1; - -// cout << "Express p-1 = " << p-1 << " as 2^" << s << "*" << t << endl; - unsigned long* e = new unsigned long[s]; - - e[0] = 0; - xGCD(g,p,u,v); - gi = fmod(u,p)+p; -// cout << "So far we got: t=" << t << " and s=" << 2 << " and gi=" << gi << endl; - for(long i=1;i +#include +#include "cryptoalgorithms.h" + +using namespace std; + +void tonelli(long a, long g, long p) +{ + long locpm1 = p-1; + long s=0, t=0; + long tmp, gi; + long u,v; + + while((locpm1 % 2) == 0) + { + s++; + locpm1 /= 2; + } + t = locpm1; + + cout << "Express p-1 = " << p-1 << " as 2^" << s << "*" << t << endl; + long* e = new long[s]; + + e[0] = 0; + xGCD(g,p,u,v); + gi = u%p; + cout << "So far we got: t=" << t << " and s=" << 2 << " and gi=" << gi << endl; + for(long i=1;i +#include + +using namespace std; + +int xGCD(long a, long b, long &x, long &y) { + if(b == 0) { + x = 1; + y = 0; + return a; + } + + long x1, y1, gcd = xGCD(b, a % b, x1, y1); + x = y1; + y = x1 - (a / b) * y1; + return gcd; +} + +