From: Christoph Fuerst Date: Sun, 26 Mar 2017 10:24:57 +0000 (+0200) Subject: Added contents on Jacobi/Legendre Symbol X-Git-Url: http://git.risc.jku.at/gitweb/?a=commitdiff_plain;h=bd028b537f6812a38e8599e2d95bfcbf88889d0a;p=cfuerst%2Fformal-numbers.git Added contents on Jacobi/Legendre Symbol --- diff --git a/report/formal.pdf b/report/formal.pdf index c5cd8e4..9fc3fd3 100644 Binary files a/report/formal.pdf and b/report/formal.pdf differ diff --git a/report/formal.tex b/report/formal.tex index 825bd3f..92c0619 100644 --- a/report/formal.tex +++ b/report/formal.tex @@ -125,7 +125,7 @@ $$ $$ Let us characterize $\phi(n)$. \begin{lem} - Let $m,n\in\mathbb{N}$, $p,p_1,p_2$ be prime, $k\in\mathbb{N}$. + Let $k,m,n\in\mathbb{N}$, $p,p_1,p_2$ be prime. \begin{itemize} \item $\phi(p) = p-1$; \item $\phi(p^k) = p^{k}-p^{k-1} = p^k \left(1-\frac{1}{p}\right)$; @@ -133,14 +133,51 @@ Let us characterize $\phi(n)$. \item $\phi(n) = n\cdot \prod_{p|n}\limits\left(1-\frac{1}{p}\right)$ ; \item $\sum_{d|n}\limits \phi(d) = n$. \end{itemize} - \subsubsection*{The Legendre/Jacobi Symbol} - TODO +Moreover if $a, n\in\mathbb{N}$ are relatively prime, then +\begin{itemize} + \item $a^{\phi(n)} \equiv 1 \pmod n$, in particular $a^{p-1}\equiv 1\pmod p$ for all primes $p$. +\end{itemize} +The last point is known as the Euler-Fermat theorem. +\end{lem} + +\subsubsection*{The Legendre/Jacobi Symbol} +In cryptographic applications, the Legendre/Jacobi symbol appears. Let $p$ be a prime. An element $a\in\mathbb{Z}_p$ is +called a \emph{quadratic residue modulo $p$} if and only if $x^2-a$ has a zero in $\mathbb{Z}_p$. Otherwise, $a$ is called +a quadratic nonresidue modulo $p$. +\begin{defn}[Legendre/Jacobi Symbol]~\\ +Let $p$ be a prime. The \emph{Legendre-Symbol} $\left(\frac{a}{p}\right)$ is defined as +$$ +\left(\frac{a}{p}\right) = +\begin{cases} + 0,\qquad & \text{if $p|a$}\\ + 1,\qquad & \text{if $a$ is quadratic residue modulo $p$}\\ + -1,\qquad & \text{if $a$ is quadratic nonresidue modulo $p$} +\end{cases} +$$ +Let $a$ be an integer and $n$ be a positive odd number such that $n = p_1^{\alpha_1}\ldots p_s^{\alpha_s}$. +The \emph{Jacobi-Symbol} $\left(\frac{a}{n}\right)$ is defined as +$$ +\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{\alpha_1}\ldots \left(\frac{a}{p_s}\right)^{\alpha_s}. +$$ +\end{defn} +\begin{lem} + Let $p,q$ be a primes, $a,b\in\mathbb{Z}_p$. Then, +\begin{itemize} + \item $\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod p$; + \item $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$; + \item $\sum_{a=0}^{p-1}\limits\left(\frac{a}{p}\right) = 0$; + \item $\left(\frac{p}{q}\right) = (-1)^{(p-1)(q-1)/4} \left(\frac{q}{p}\right)$; + \item $\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$. +\end{itemize} + +\end{lem} + + \subsubsection*{The discrete Logarithm problem} TODO \subsection{The RSA cryptosystem} TODO -\end{lem}