finished mathematical introduction on finite fields
authorChristoph Fuerst <ch.fuerst@gmx.at>
Sat, 25 Mar 2017 21:17:36 +0000 (22:17 +0100)
committerChristoph Fuerst <ch.fuerst@gmx.at>
Sat, 25 Mar 2017 21:17:36 +0000 (22:17 +0100)
report/formal.pdf
report/formal.tex

index ccfdd39..a4ec8ca 100644 (file)
Binary files a/report/formal.pdf and b/report/formal.pdf differ
index a4dca18..74af037 100644 (file)
@@ -32,12 +32,28 @@ systems.
 \section{Introduction}
 
 \section{Mathematical and Cryptographic Preliminaries}
+Throughout this paper, let $\mathbb{N}$ denote the non-negative
+integers including zero, i.e. $\mathbb{N} = \{0,1,2,\ldots\}$.
 One of the most fundamental notions in mathematics is without doubt
-the term \emph{divisor}, we say that \emph{$a$ divides $c$} if there is a number $b$
-such that $c = a\cdot b$. Among all divisors of two numbers $a$,$b$ there is
-a unique \emph{greatest} common divisor of $a$ and $b$, denoted by $\gcd(a,b)$ 
-that is computed by the Euclidean algorithm. The extended Euclidean algorithm 
-allows to compute numbers $s$ and $t$ such that $a\cdot s + b\cdot t = \gcd(a,b)$.
+the term \emph{divisor}, we say for $a,c\in\mathbb{N}$,
+that \emph{$a$ divides $c$}, and write $a|c$, if there is a number $b\in\mathbb{N}$
+such that $c = a\cdot b$. Every number $n\in\mathbb{N}$ has at least
+two divisors. A \emph{prime number} $p\in\mathbb{N}$ is a number $p$ 
+that has exactly two divisors, $1$ and $p$. Let now be given two numbers 
+$a,b\in\mathbb{N}$. Among all divisors of two numbers $a$,$b$ there is a 
+unique \emph{greatest} common divisor of $a$ and $b$, denoted by $\gcd(a,b)$,
+that is computed by the \emph{Euclidean algorithm}. The \emph{extended Euclidean algorithm} 
+allows to compute integers $s,t\in\mathbb{Z}$ such that $a\cdot s + b\cdot t = \gcd(a,b)$.
+In particular, if $p$ is prime and $a\in\mathbb{N}$, there are integers $s,t\in\mathbb{Z}$
+such that
+$$
+p\cdot s + a\cdot t = 1 \Longleftrightarrow a\cdot t\equiv 1\pmod p \Longleftrightarrow p|(a\cdot t-1).
+$$
+The last equivalence introduces the notion of 'multiplicative inverse mod $p$', i.e.
+$a\cdot t \equiv 1\pmod p$ means that $t = a^{-1}$ if we consider the integers modulo
+a prime number $p$. The integers modulo a prime $p$ form a field, as introduced in the
+next subsection.
+
 \subsection{Finite Fields}
 An elementary notion in cryptographic mathematical theories, is the notion
 of a finite field. A field is a set $K$ where the elementary mathematical
@@ -47,8 +63,33 @@ complex numbers $\mathbb{C}$, are infinite fields, the focus in cryptographic
 applications is on \emph{finite fields}. A finite field with $p$ elements, where
 $p$ is prime, is usually written as $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$,
 and consists of the elements $\{0,1,\ldots,p-1\}$. The number $p$ is called the
-\emph{characteristic} of $\mathbb{Z}_p$, in fact, the characteristic of every 
-finite field is a prime power.
+\emph{characteristic} of $\mathbb{Z}_p$. In fact, the characteristic of every 
+finite field is a prime power. Throughout this paper, we restrict our attention
+to the set $\mathbb{Z}_p$, i.e. the integers modulo a prime $p$ (rather than
+a prime power).\\
+
+Let $p$ be a prime. In finite sets of the form $\mathbb{Z}_p$, addition, subtraction
+and multiplication are performed modulo residue classes, i.e. if we denote the residue of 
+$a\in\mathbb{Z}$ modulo a prime $p$ by $[a]_p$, then we have
+$$
+[a]_p \pm [b]_p := [a\pm b]_p,\qquad [a]_p\cdot [b]_p := [ab]_p.
+$$
+For division in a finite field, we recall that $a/b = a\cdot b^{-1}$ where $b^{-1}$ is
+the multiplicative inverse of $b$ modulo $p$, i.e. $[b]_p\cdot [b^{-1}]_p = [b\cdot b^{-1}]_p = [1]_p$.
+The multiplicative inverse can be computed by the extended Euclidean algorithm. Hence, we we define
+$$
+[a\div b]_p := [a\cdot b^{-1}]_p.
+$$
+Hence, the finite set $\mathbb{Z}_p$ with the operations of addition, subtraction, multiplication
+and division as defined above, forms a finite field.\\
+
+For residue classes, there are two representations available, either 
+$$
+\left\{-\frac{p-1}{2},\ldots,\frac{p-1}{2}\right\}\qquad \text{ or }\qquad \{0,\ldots,p-1\} = \mathbb{Z}_p,
+$$
+which carry equivalent information. We focus on the second representation, i.e.
+we demand the result of the operation modulo $p$ to be in $\mathbb{Z}_p = \{0,\ldots,p-1\}$.
+
 
 \section{The Formal Verification}